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One-dimensional filtration at a rate which decreases hyperbolically, based on the Mints model [1], is considered. The system of 
model equations with the appropriate initial and boundary conditions is shown to be equivalent to the Goursat problems for 
hyperbolic equations. This is solved by the Riemann method using a method for finding a Riemann function proposed here. The 
method gives the well-known results for filtration at a constant rate. The hyperbolic and linear laws of filtration at a decreasing 
rate are shown to be equivalent under practical conditions of filter use. © 1998 Elsevier Science Ltd. All rights reserved. 

The system of model equations with initial and boundary conditions corresponding to the Mints model for T = 0 
has the form 

Pt +v (t)C x = O, Pt = ~C-a( t )p  

v ( t )=Vo/ ( l+ ' f f ) ,  a(t)=aov(t); Vo, T, ct0 =const 

(1) 

pit= 0 = 0, Clx: 0 = C O; C O = const (2) 

Herex is the coordinate along the thickness of  the filter, ~(t) is the filtration rate, C(x, t) and p(x, t) are the required 
concentrations of impurities suspended in the liquid and sediment, respectively, I~ is a kinetic coefficient, assumed 
to be constant [2] and Co is the impurity concentration in the liquid at the filter inlet. 

Eliminating the function p from system (1) and putting C = U( + 7t) -z, where z ffi a0~T -1, we obtain the hyperbolic 
equation 

Uxt + b(t)U t - pU = O, b(t) = l~v~ I (1 + Tt), p = l~vo'l¥(z- 1) (3) 

From conditions (2) and system (1) we obtain 

Ulx=o = CO (I + yt):, Ult: o : C o exp(-~v ~-Ix) (4) 

Problem (3), (5) is a special case of  the Goursat problem [3], which is solved simply by finding the corresponding 
Riemann function R. By the method of  determining the Riemann function that we propose here, for the general 
second-order linear equation of  hyperbolic type with two independent variables, as it applies to Eq. (3), we will 
have 

R=exp[b(t)(x-~)]~=oT~n! (X-~)n 

t t t 1 

Ta n = I [ P -  ( n -  1)b~ (t)]I... I [ P -  b, (t)] I p(dt) n 
"q 11 11 

(5) 

Substituting the expressions for b(t) andp into (5) we obtain 

R = exp[(l + t ' ) (£-~)]  z - 1  [(t - ' q  -~)]"  = 
n=o~,n J n:  

= exp[(l +7)(,~-~)] l Fl [ - ( z -  1).1;-(~'- ~!)(£- ~)] 

( t ' -~ )  = T(t-I]) ,  ( . r-~) = ~ ( x - { )  
U 

(6) 

tPrikL Mat. MekK Vol. 62, No. 3, pp. 51%519, 1998. 

479 



480 I . I .  Demch ik  

Here 11 and ~ are the current values ofx and t respectively and 1F1 is the confluent hyperbolic function. 
Using the relation [4] 

1 fi (m~';z) = e zl FI (7 - ct,V;-z) 

we can represent the Riemann function in the form 

R = exp[(2- ~)(fi + 1)] I F l (z,1;(}" - fi)(.~ -5) ]  

Then, from expression (6) using the Riemann method [3] we find 

C(~c,t) = ~ { e - i l F l [ - ( z - 1 ) , l ; - ~ ? ] +  zG(x,t,z-1)} 
(1+7) 

G(Yc,'[,z) = 5(1 + x) z e -i(l+x)l F 1 [-z,1;~(x - t )]art 
0 

(7) 

(8) 

We will discuss some features of this solution. If the quantity z - 1 is equal to a non-negative integer n, the confluent 
hypergeometric series terminates, and [4] 

I FII ( - n , 1 ; - y )  = L n ( - y )  (9 )  

where L n is a Laguerre polynomial of degree n. We also have the following limit [4] 

Here J0 is a zero-order Bessel function of the first kind. 
Thus for sufficiently large n the function 1F1 in expression (9) can be replaced by a zero-order Bessel function 

of the first kind of imaginary argument Io. In fact 

lim Ln[-$(?-x)]=lim**Lnl " ~ ( t ' L f 0 ) ] = l o ( 2 ~  ) t,=aeuo t (11) 

Thus in this case expression (8) takes the form 

Changing to the variable (p = x (tl - 0), we have the solution obtained by T'ddaonov [5], corresponding to a constant 
filtration rate (1' = 0). However, since (12) is an asymptotic representation of the solution (8) as z = a0~07 -1 ~ ,~, 
we can conclude that it also holds for a0~0 "> 7, that is, at relatively high filtration rates when the sediment is unstable, 
and the probability that the liquid flow will detach sediment particles is high. 

A similar method is used to find the concentration p. Eliminating the function C from system (1) and putting 
p = V(1 + ~)-z, we obtain an equation in V(x, t) which differs from Eq. (3) in thatp = a01~. Transforming conditions 
(2) using system (1), we obtain 

VIt= 0 = 0, VIx= 0 = ~ [ ( l  +)'t) I+z - l] (13) 

In this case too the Riemann function is found from formula (5), but withp = a0~, resulting in a formula similar 
to (6) but with z - 1 replaced by z. Using the Riemann method [3], we find 

p(Y,/')= ~C° G(Tc,?,z) (14) 
"f(1 + ~')z 

I fz  is a sufficiently large integer then, according to relation (11), the expression 

p(~,~)  = ffc° e-~-~'H(~,?~) (15) 
aou0 

can be used instead of (14). 
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Solutions (8) and (14) and their asymptotic representations (12) and (15) have a specific statistical interpreta- 
tion, since system (1) reduces to stochastic equations of  the Kolmogorov-Feller type in the concentrations C and 
p. In particular, it has been shown [6] that the Mints model [1], which is the prototype of system (1) with T ffi O, 
can be reduced to the Kolmogorov-Feller equations; solution (15) for the concentration p is identical to the 
Rayleigh-Rice integral distribution function and can be represented in the form of arithmetic operations on the 
Poisson probabilities of suspended particles of  impurity being captured and of particles of  the sediment which forms 
being detached. 

Note that solutions (8) and (14) give a good approximation for a linearly decreasing filtration rate. In practice, 
by the time t. at which filters cease to offer protection, over a wide range of conditions of  filter use, the rate has 
fallen by no more than 10-15%. This means that 

u( t )=VO/ ( l+ ' f f )~ 'u0 ( l -~ )  for t ~ t .  

that is, with the given constraints on the filtration rate, the hyperbolic and linear laws of rate variation can be 
considered to be equivalent. 
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